
CTPPL: A Continuous Time Probabilistic Programming Language

Avi Pfeffer

School of Engineering and Applied Sciences
Harvard University

avi@eecs.harvard.edu

Abstract

Probabilistic programming languages allow a mod-
eler to build probabilistic models using complex
data structures with all the power of a program-
ming language. We present CTPPL, an expressive
probabilistic programming language for dynamic
processes that models processes using continuous
time. Time is a first class element in our language;
the amount of time taken by a subprocess can be
specified using the full power of the language. We
show through examples that CTPPL can easily rep-
resent existing continuous time frameworks and
makes it easy to represent new ones. We present
semantics for CTPPL in terms of a probability mea-
sure over trajectories. We present a particle filtering
algorithm for the language that works for a large
and useful class of CTPPL programs.

1 Introduction

Probabilistic programming languages (e.g. IBAL [Pfeffer,
2007], BLOG [Milch, 2006], Church [Goodman et al., 2008])
are an exciting development in probabilistic knowledge repre-
sentation. They allow a modeler to build probabilistic models
using complex data structures with the full power of program-
ming languages. Most probabilistic programming languages
that have been developed are static, but ProPL [Pfeffer, 2005]
and D-BLOG [de Salvo Braz et al., 2008] extend such lan-
guages to dynamic models. However, they both use discrete
time.

There are a number of arguments for using continuous time
models. First, most real-world processes take place in con-
tinuous time; discretization is an artificial imposition to force
them into a discrete time framework. Second, when we model
a process in discrete time, we have to make the discrete time
increments fine enough to capture all the important events,
but most of the time reasoning at such a fine time granularity
is unnecessary. In the context of probabilistic programming
languages, there is a third argument. When we model a pro-
cess in continuous time, it becomes natural to make the time
taken by a subprocess be a variable which can be specified us-
ing the full power of the language. In short, time becomes a
first class element of the language. In contrast, in discrete

time representations, usually the world proceeds from one
time step to the next, and the time between them is fixed.

In this paper we present CTPPL (pronouced “Cat Peo-
ple”), a continuous time probabilistic programming language.
CTPPL is similar to ProPL, but is different in four main ways:
(1) values in CTPPL are discrete or continuous; (2) time is
continuous; (3) probability and time are first class elements
of the language; and (4) inference is conducted by sampling
trajectories through a state space, rather than constructing a
giant dynamic Bayesian network. We first present the syntax
of the language and some examples. When combining the
expressive power of probabilistic programming with continu-
ous time, both semantics and inference become challenging.
In Section 4 we present the semantics of a CTPPL program
as defining a probability measure over a space of equivalence
classes of trajectories through state space, where the trajec-
tories are partly discrete and partly continuous. In Section 5
we present a particle filtering algorithm that works for a large
and useful class of CTPPL programs. At the core of our al-
gorithm is an importance sampling algorithm that guarantees
that if the set of particles at one time point is consistent with
the next set of observations that are received, then with pos-
itive probability the algorithm will generate a new particle
with positive weight.

2 The Language

The basic unit of the CTPPL language is the expression,
which describes a computation that executes stochastically
in time while producing a value. While it is executing, it
may produce emissions, which are observations that happen
at particular points in time. Expressions can be any one of the
following forms:
c Constant
n Variable
if e1 then e2 else e3 Conditional
lambda n.e Function definition
e0(e1) Application
e1 ⊕ e2 Binary operator
{e1, e2} Pair construction
left e Component extraction
right e Component extraction
flip e Discrete probabilistic choice
q(e) Continuous probabilistic choice
first [e1, e2] First expression

1943

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
CTPPL: A Continuous Time Probabilistic Programming Language

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Harvard University,School of Engineering and Applied
Sciences,Cambridge,MA,02138

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
IJCAI-09 accepted paper, July 2009

14. ABSTRACT
Probabilistic programming languages allow a modeler to build probabilistic models using complex data
structures with all the power of a programming language. We present CTPPL, an expressive probabilistic
programming language for dynamic processes that models processes using continuous time. Time is a first
class element in our language the amount of time taken by a subprocess can be specified using the full
power of the language. We show through examples that CTPPL can easily represent existing continuous
time frameworks and makes it easy to represent new ones. We present semantics for CTPPL in terms of a
probability measure over trajectories. We present a particle filtering algorithm for the language that
works for a large and useful class of CTPPL programs.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

emit e1; e2 Emission
delay e1; e2 Delay expression
now Now expression

Constants can be boolean, string, integer or floating point.
While variables, conditionals, function definition, applica-
tion, pair construction and component extraction are familiar,
some explanation is needed of how they specify an execu-
tion in time. In a conditional if e1 then e2 else e3, the
test e1 is first evaluated. After it has completed, either e2

or e3 is evaluated, depending on the result of e1. In a func-
tion application e0(e1), e0 and e1 are evaluated in parallel to
produce values v0 and v1. After they have both completed,
the body of v0 is evaluated with its formal argument bound
to v1. For binary operators, the two arguments are evaluated
in parallel. Once they have terminated the result is produced
immediately. In a pair construction {e1, e2}, e1 and e2 are
evaluated in parallel. The time of completion of the entire
pair construction is the later of the completion times of e1

and e2.
Discrete probabilistic choice is familiar from other prob-

abilistic programming languages such as IBAL and Church:
flip e means evaluate e to produce a non-negative floating
point value v, and then with probability v return T, otherwise
return F. Note that unlike IBAL and ProPL, but like Church,
the probability is defined by an expression, so is a first class
element of the language. Continuous probabilistic choice is
new to CTPPL. Here q is a probabilistic primitive that, given a
parameter, defines a probability density function. The mean-
ing of q(e) is to first evaluate e to produce a value v for the
parameter, and then generate a value from the density func-
tion defined by q given the parameter value v. The language
is fully general in allowing any primitive, as long as (1) we
can generate samples from it, and (2), we can compute its
density at any point.

The meaning of first [e1, e2] is to begin evaluating e1

and e2 in parallel. As soon as either of them completes with
a value v, the entire first expression completes with value v.
Ties are broken in favor of e1. The meaning of emit e1; e2

is to evaluate e1 to produce a value v, completing at time t. v
is then emitted at time t. Finally e2 is evaluated, beginning at
time t, to produce the result of the expression.

Passage of time is specified through delay expressions. The
meaning of the expression delay e1; e2 is to first evaluate e1

to produce positive floating point value v, terminating at time
t. Then e2 is evaluated, beginning at time t + v. In other
words, there is a delay of v between the time e1 ended and
the time e2 begins. The expression e1 is called the delaying
subexpression of the delay expression. While delay expres-
sions are present in ProPL, they are different in CTPPL. The
two differences are that the delay time is continuous, and the
delay time is specified by an arbitrary expression (in ProPL,
it is specified by an integer constant). Thus the delay is a first
class element of the language. The final construct, which fur-
ther makes time a first class element of the language, is now,
which always returns immediately, evaluating to the current
time at the time of its evaluation.

In addition to the above bare-bones language, CTPPL pro-
vides a good deal of syntactic sugar. One of these is the
expression dist [ep

1 : er
1, ..., e

p
n : er

n], which is a general-

ization of discrete probabilistic choice. The meaning is to
evaluate ep

1, ..., e
p
n in parallel to produce a set of non-negative

floating point values, normalize the values to obtain proba-
bilities p1, ..., pn, choose one of the er

i with probability pi,
and then evaluate er

i to produce the result. Others include
let expressions, in which a variable is bound to a value to be
used in a result expression; case expressions, analogous to
switch expressions in C; functions of many arguments; tuples
of many components; first expressions with many subexpres-
sions; records with named fields; and lists with supporting
functions. We will use syntactic sugar freely in the examples.
However, we will restrict attention to the core language when
defining the semantics and inference algorithm.

We impose the following restrictions on models: (1)
In an emission, the emitted value cannot be float-
ing point. (2) In a delay expression, the delaying
subexpression must be continuously distributed at the
time of evaluation, with no points of positive prob-
ability mass; for example, the delaying subexpression
in let x = uniform(1.0) in delay x; 1 is not
continuously distributed, because at the time of evaluation x
is bound to a value. (3) Emissions are not allowed to be pro-
duced while executing a delaying subexpression. (4) Delays
must be positive. (5) Floating point values cannot be com-
pared for equality, only inequality. (6) Floating point arith-
metic binary operators are required to be invertible. We also
assume that at any time point, with probability 1 the process
will either progress to another time point or terminate. Even
with these restrictions, the language allows many useful and
interesting processes to be represented, and the expressive
power goes far beyond that of any existing language.

3 Examples

In recent years there has been a flurry of interest in continuous
time models, mostly focused on continuous time Bayesian
networks (CTBNs) [Nodelman, 2007]. CTBNs are built on
homogenous Markov processes. A homogenous Markov pro-
cess is a finite state, continuous time process, consisting of an
initial distribution P 0 and intensity matrix

Q =

⎡
⎢⎢⎣

−q1 q12 . . . q1n

q21 −q2 . . . q2n

...
...

. . .
...

qn1 qn2 . . . −qn

⎤
⎥⎥⎦

The meaning is that if the process in state i, it stays in state
one for an amount of time governed by an exponential distri-
bution with parameter qi, then transitions to qj with probabil-
ity qij/qi. We can write this in CTPPL using

x() = dist [P 0
1 : x1(), ..., P 0

n : xn()]
x1() = delay exp(q1);
dist[q12/q1 x2(), ...,q1n/q1 : xn()]

...

Some state transitions can produce emissions.
In a CTBN, each variable has a conditional inten-

sity matrix Qu for every combination of values u of
its parents. To capture CTBNs, we use three helper

1944

functions that are easy to write and are not shown.
change ith(list, i, value) changes the i-th el-
ement of list to value, keeping the rest as in list.
extract indices(list, indices) returns a tuple
consisting of the elements at the given indices of the input
list. first list i(f,list) is a higher order function
that takes a function f, applies it to each member of list,
and returns the first produced result (like a first) expres-
sion. The function f takes two arguments, the element and
the index of the element in list. In a CTPPL model of a
CTBN, each variable has a process of the form:

x0(previous) =
case {previous.x1,extract indices([2,4])}
of {1,u} ->
delay exp(qu

1);
dist[qu

12/qu
1: 2,..., qu

1n/qu
1: n]

...

Here [2, 4] are the indices of the parents of x0. Again, some
transitions can produce emissions. A list of variable pro-
cesses is passed to the ctbn function, which works with ar-
bitrarily many variables. The init() function is a specifi-
cation of a Bayesian network defining the initial state.

ctbn(variables) =
let process(previous) =
process
(first list i
(lambda (v,i) .
change ith(previous, i, v(previous))),
variables)

in process(init())

Some authors [Gopalratnam et al., 2005; Nodelman et al.,
2005] have studied how to extend CTBNs to allow Erlang-
Coxian and phase distributions for the delays. This can easily
be done in CTPPL since delaying subexpressions can be ar-
bitrary expressions.

CTPPL goes well beyond CTBNs in two important ways.
The first is that we can define processes over arbitrarily com-
plex data structures. The second is that time is a first class
element of the language. So, for example, we could have de-
pendent delays, as in

let x = uniform(2.0) in
{delay exp(x) in ‘‘a’’,
delay exp(x+1) in ‘‘b’’}

or we could have a delay dependent on the value produced by
the delay expression, as in

let x = uniform(2.0) in
delay exp(x) in x

To illustrate the power of these two ideas in combination,
we develop a model of musical performance. We begin
with a simple model of monophonic performance, follow-
ing [Cemgil and Kappen, 2003]. The play function takes
as arguments the current tempo, and the input, which is a list
of {time, pitch} pairs. The time element is the musical dura-
tion before which the pitch should be played. In the following

code, posnormal denotes a truncated normal distribution,
with the given mean and variance, constrained to be positive.
Note that both the delay and the variance of the new tempo
depend on the duration.

play(tempo,input) =
if empty(input)
then true // termination
else
let duration = left head(input) in
delay posnormal({duration * tempo,
0.01});

emit right head(input);
let new tempo =
posnormal({tempo,
0.04 * duration * duration}) in

play(new tempo, tail(input))

In CTPPL it is easy to generalize this model to ar-
bitrarily many voices. With multiple voices the per-
formed pitches of the voices are interleaved. The follow-
ing code uses the standard higher-order function map i,
which is similar to first list i above except that
it maps a two-argument function over all elements of
a list. filter(non empty, new input) returns
new input with all empty lists removed. The idea behind
the code is that after each emission, it attempts, in parallel,
to process each voice, generating the time of the next emis-
sion for that voice, and the transformed input after the voice
has played its next note. In this input transformation, pro-
duced by mapping the helper function over the old input,
the voice itself is replaced with its tail, because its note has
been played, whereas for all the other voices the duration un-
til the played note is subtracted from the time to the first note.
Now, all this is done in parallel for each of the voices, but
only the first to produce its emission is actually used. In this
way, the emissions of all the voices are interleaved.

play(tempo, input) =
if empty(input) then true else
let process(l,i) =
let duration = left head(l) in
delay posnormal({duration * tempo,
0.01});

emit right head(l);
let helper(m,j) =
if j == i
then tail m
else {left head(m) - duration,

right head(m)} :: tail(m) }
in
let new input = map i(helper, input) in
let new tempo =
posnormal({tempo,
0.04 * duration * duration}) in

{new tempo, filter(non empty, new input)}
in
let { new tempo, new input } =
first list i(process, input) in

play(new tempo, new input)

1945

4 Semantics

The semantics of a CTPPL program is a probability measure
over a set of equivalence classes of trajectories through state
space. A state consists of a CTPPL expression, a time stamp,
and a set of marks on subexpressions of the expression. In-
tuitively a state is a point in the execution of a process. The
expression defines the process currently being executed. The
time stamp is the current time. The marks indicate which
subexpressions of the expression are being processed. Since
execution can occur in parallel, there may be multiple marks.
Our notation for a state is a pair of an expression and a time
stamp, with a bullet in front of each of the marked subexpres-
sions. For example (if • e1 then e2 else e3, 3) is the
state consisting of the if expression, with time stamp 3, with
a mark on e1.

States can transition to other states. There are three kinds
of transitions: free transitions, which do not involve probabil-
ities or time delays; probabilistic transitions, which involve
probabilistic choice but no time delays; and temporal tran-
sitions, in which the time stamp of the state changes. Free
transitions are expressed using rewrite rules. Since the time
stamp does not change, we omit the time stamp part of the
state in the following rules. In the following transition rules, v
denotes an expression which directly specifies a value, which
could be a constant, a lambda expression, or a pair of val-
ues. Also the notation w denotes an expression that does not
directly specify a value. The notation e[x/v] denotes the ex-
pression produced from replacing all unshadowed occurences
of x in e with v. The free transition rules are:

•if e1 then e2 else e3 → if • e1 then e2 else e3

if • T then e2 else e3 → •e2

if • F then e2 else e3 → •e3

•(e0(e1)) → (•e0)(•e1)
•(lambda n.e)(•v) → •e[n/v]
•(e1 ⊕ e2) → (•e1) ⊕ (•e2)
(•v1) ⊕ (•v2) → •(v1 ⊕ v2)
•{e1, e2} → {•e1, •e2}
{•v1, •v2} → •{v1, v2}
•left e → left • e
left • v → •x where v = {x, y}
•right e → right • e
right • v → •y where v = {x, y}
•flip e → flip • e
•q(e) → q(•e)
•first [e1, e2] → first [•e1, •e2]
first [•v1, •e2] → •v1

first [•w1, •v2] → •v2

delay • 0; e → •e
•emit e1; e2 → emit • e1; e2

emit • v1; e2 → •e2, while emitting v1

The expression now also produces a free transition, but it de-
pends on the time. The rule is (•now, t) → (•t, t).

Probabilistic transitions specify a probability distribution
or probability density function over next states. When exe-
cuting a probabilistic transition, the process transitions to an-
other state with the given probability or probability density.

The probabilistic transition rules are:

flip • v →
{

T with probability v
F with probability 1 − v

q(•v) → x with density q(v)(x)

Temporal transitions are continuous. A temporal transition
begins in a time-terminal state, which is a state in which no
free or probabilistic transitions are possible. For example,

(delay (delay • 2.0; exp(3.0));
if flip 0.5 then ‘‘a’’ else ‘‘b’’,

7.2)

is a time-terminal state. Note that when there are nested
delays, not all the delaying subexpressions in a time-
terminal state need specify a value. For example, in
delay (delay 2.0; uniform(3.0)); 1, only the
inner delay’s delaying subexpression specifies a value. If a
time-terminal state contains no delaying subexpressions, no
temporal transition is possible. Otherwise, define the mini-
mum delay time of a time-terminal state to be the minimum
of the values specified by its value specifying delaying subex-
pressions. Let (e, t) be a time-terminal state with minimum
delay time δ. The process transitions through a continuum of
states (eu, u) for u ∈ [t, t + δ], where eu is the same as e
except that every value specifying delaying subexpression v
is replaced with v−(u−t). At time t+δ, one of the delaying
subexpressions will be 0, so a free transition is available and
the process can continue.

No transitions are allowed on expressions that specify a
value. The rules for applying the transitions are as follows:

1. Let i = 0, and let t0 = 0.
2. Execute free and probabilistic transitions at ti that are

not applied to delaying subexpressions until no more
are available. Transitions are performed in a depth-first
manner, but the order in which parallel subexpressions
are resolved is arbitrary, except that first subexpres-
sions must be resolved in the order in which they appear.

3. If there are no delaying subexpressions, the expression
must specify a value, and the process terminates.

4. Otherwise, let the state be called the pre-delay-
resolution state (PDRS) at time ti.

5. At this point, the delaying subexpressions are resolved
one by one using free and probabilistic transitions. If
there are no nested delays, a delaying subexpression will
resolve to specify a value. If there are nested delays, the
outer delaying subexpressions will not resolve to a value,
but eventually some of the nested delays will.

6. Finally, we reach a time terminal state at ti and execute
a temporal transition through [ti, ti+1]. We set i ← i+1
and continue with step 2.

A trajectory consists of a discrete sequence of states at time
t0 = 0, followed by a continuum of states up to time t1,
followed by another discrete sequence of states at time t1,
followed by another continuum of states up to time t2, and
so on. A trajectory also determines a sequence of emissions,
defined as a list [t0 : m0, t1 : m1, ...], where mi is the set of

1946

emissions that happen at time ti. The trajectory and emission
sequence may or may not terminate.

We define an equivalence relation on trajectories, saying
that two trajectories are equivalent if they contain the same
transitions, except that parallel subexpressions may be re-
solved in different orders. Equivalent trajectories have the
same PDRSs, time-terminal states, temporal transitions and
emission sequence. The rules specified above define a prob-
ability measure over equivalence classes of trajectories. The
elementary sets consist of sets of equivalence classes contain-
ing the same free transitions, the same discrete probabilistic
transitions, and in which the continuous probabilistic transi-
tions fall in an interval. The density of an equivalence class
is the product of the probabilities of its discrete probabilis-
tic transitions and the densities of its continuous probabilistic
transitions. Because all members of an equivalence class have
the same probabilistic transitions, the probability of an equiv-
alence class is equal to the product of the probabilities and
densities of the probabilistic transitions in any member. In
the next section, we will use the term path to describe a con-
tiguous sub-trajectory of a trajectory, and we will use the term
“probability of a path” to denote the product of the probabil-
ities and densities of the probabilistic transitions in the path.

This semantics is well able to handle cases where a poten-
tially unbounded number of processes happen in parallel. For
example, consider the program:

let f(x) =
delay exp(1);
first [delay exp(2); x, f(x+1)]
in f(0)

We will first expand f(0) to transition to the PDRS

delay • exp(1);
first [delay exp(2); 0, f(1)]

We will resolve the delaying subexpression exp(1),
choosing a value, say 0.7. We will then take a
temporal transition to time 0.7, and then transition to
• first [delay exp(2); 0, f(1)]. Next, we will
move the mark inside the first expression, and expand f(1)
to transition to the PDRS

first [delay • exp(2);0,
delay • exp(1);
first [delay exp(2); 1, f(2)]]

Let’s say we sample 1.3 and 0.5 for the two delaying subex-
pressions. We will take a temporal transition to time 1.2 and
the expression

first [delay • 0.8; 0,
• first [delay exp(2); 1, f(2)]]

Now we will move the second mark inward and expand f(2)
to reach another PDRS

first [delay • 0.8; 0,
first [delay • exp(2); 1,

delay • exp(1);
first [delay exp(2); 2, f(3)]]]

Now we will resolve the latter two delaying subexpressions.
Let’s say we get 0.9 and 1.2. We will take a temporal transi-
tion to time 2.0 and transition to

first [• 0,
first [delay • 0.1; 1,

delay • 0.4;
first [delay exp(2); 2, f(3)]]]

By the rules for first expressions, this resolves to 0. Even
though the number of parallel processes is unbounded, in any
given run the process will terminate in a finite amount of time.
Each such finite run has a well-defined probability of happen-
ing.

By contrast, consider the program

let f(x) =
first[delay exp(0); x, f(x+1)]

in f(0)

This is a divergent program. Infinitely many parallel branches
will be expanded before any delaying subexpression is re-
solved. Our semantics does not handle such a program, and
it is disallowed.

5 Inference

Our goal is to monitor the state of the system over time based
on observations. Our observations consist of a stream of
emissions. At each time point i = 0, 1, ..., we want to es-
timate the probability distribution over the PDRS at time ti
given the sequence of emissions up to time ti. We choose the
PDRS because of two properties: (i) no more emissions are
possible at ti after the PDRS has been reached (because of our
restriction that executing a delaying subexpression is not al-
lowed to produce emissions); and (ii), no delaying subexpres-
sions have been resolved, so stopping at the PDRS is making
a minimal commitment about what time ti+1 will be. For-
mally, we want to estimate P (S(ti)|m0, ...,mi), where S(ti)
denotes the PDRS at time ti.

We will estimate the distribution at time ti using a set of
particles. As usual, we proceed recursively, beginning with
an initial estimate of P (S(0)|m0), and then recursively esti-
mating P (S(ti)|m0, ...,mi) by repeatedly choosing a parti-
cle si−1 from P (S(ti−1)), and sampling a particle si from
P (S(ti)|S(ti−1) = si−1, mi).

One might think that the simplest way to do this is to use
rejection sampling. We can define a sampling process using
the transition rules from Section 4. We begin by choosing a
PDRS si−1 at random from our previous set of particles at
time ti−1. We then resolve the delaying subexpressions until
we reach a time-terminal state with minimum delay time δ.
Let t′ be ti−1 + δ. We then reason as follows:

1. If t′ < ti, we complete the temporal transition to time
t′. We then execute some free and probabilistic transi-
tions until we reach a PDRS at time t′. If in the process
an emission is produced, we reject the sample because
according to our observations there are no emissions be-
tween ti−1 and ti. Otherwise, we continue the process
beginning with the new PDRS.

1947

2. If t′ = ti, we complete the temporal transition to time
ti, perform some more free and probabilistic transitions,
and finally arrive at a PDRS si at time ti. We check to
see if the emissions mi have been produced. If so, we
accept the sample and add si to the set of samples at time
ti. If not, we reject the sample.

3. If t′ > ti, we can immediately reject the sample. This
is because no emissions are possible in the middle of a
temporal transition.

The problem with this approach is that we can only ac-
cept a sample if t′ = ti. Since delay times are continuously
distributed, this has probability zero of happening. Essen-
tially the problem is that rejection sampling cannot be used
when conditioning on events of measure zero. Instead, we
use a particle filtering approach. Ng et al. [Ng et al., 2005]
present a particle filtering method for continuous time, hy-
brid state processes. Fan and Shelton [Fan and Shelton, 2008]
present importance sampling and particle filtering algorithms
for CTBNs which form the basis for our approach. As in
standard particle filtering, we begin with an unweighted set
of samples at time ti−1. We choose a sample si−1 at ran-
dom from this set and use importance sampling to gener-
ate a weighted particle si at time ti. We then resample the
weighted particles to produce a set of unweighted particles
which is our estimate P (S(ti)|m0, ...,mi).

5.1 Importance Sampling

The importance sampling algorithm we use is actually an
importance/rejection algorithm, since rejections are allowed.
However, we will guarantee that if mi has positive proba-
bility given our estimate of P (Si−1|m0, ...,mi−1), then with
positive probability a new sample si will be generated with
positive weight. The main idea of our algorithm is that some
delays are key delays. Suppose we begin with a PDRS (e, t).
We proceed to resolve the delaying subexpressions. At the
time we process the last delaying subexpression e′, let the
minimum delay time of all the delaying subexpressions that
have already been resolved to specify a value be δ, and let
t′ = t + δ. If t′ ≤ ti, then we know at the time we process e′
that the temporal transition will take us to a time at or before
t′, which is no later than ti. So we need place no constraints
on the resolution of e′. If, on the other hand, t′ > ti, we say
that e′ is a key delay. We know that if e′ resolves to a value
δ′ > ti − t′, we will be forced to reject the sample. There-
fore, when we encounter a key delay e′ we use the following
procedure.

1. Sample a resolution of e′.
2. If resolving e′ results in one or more nested delays, let

e′′ be the delaying subexpression in e′ that is the last to
be processed. We can reason about e′′ in the same way
as e′ and continue the sampling process.

3. Otherwise, resolving e′ produces a value δ′. Let t′′ =
t + δ′.

4. If t′′ < ti, complete the temporal transition to t′′ and ex-
ecute free and probabilistic transitions to reach a PDRS
s′′. If emissions are produced, reject. Otherwise, con-
tinue sampling from s′′.

5. If t′′ ≥ ti, force t′′ to be equal to ti, compensating with
an importance weight w. Complete the temporal transi-
tion to ti and execute free and probabilistic transitions
to reach a PDRS si. If the emissions mi are produced,
add si with weight w to the set of weighted particles at
ti. Otherwise reject the sample.

There is a subtlety related to parallel execution. If we al-
ways resolve the delaying subexpressions in the same order,
some subexpressions will never be key delays. If the observed
emissions are the result of those delays completing, we will
never get an accepted sample. In technical terms, the proposal
distribution will not be positive everywhere the true distribu-
tion is. To get around this problem, we randomly choose the
order in which delaying subexpressions are resolved.

To derive the importance weight, we reason as follows: Let
s be the state just before the key delay is resolved. Let s′ be
the state in which the key delay is resolved to specify the
value δ′ = ti − t. Let s′′ be the state with time stamp ti at
the end of the temporal transition from s′. The probability
density of a path from si−1 through s, s′ and s′′ to si can be
written as p(si−1 � s)p(s � s′)p(s′′ � si), where s1 � s2

denotes the event the s1 leads to s2 through some sequence
of transitions, because p(s′ � s′′) is 1. Now consider our
proposal distribution. We sample the path from si−1 to s nor-
mally, and similarly the path from s′′ to si. However, we
force s to lead to s′. This happens with probability P (φ),
where φ is the event that resolving s does not lead to nested
delays and produces a value δ ≥ ti − t. Thus the proposal
probability density of the path is p(si−1 � s)P (φ)p(s′′ �

si). Therefore the importance weight, which is the true den-
sity divided by the proposal density, is p(s � s′)/P (φ).
P (φ) can easily be estimated using forward sampling. It re-
mains to specify how to estimate p(s � s′).

5.2 Regression

Our algorithm for estimating p(s � s′) works by “regress-
ing” the target value δ through the expression of state s. In-
tuitively, the regression process takes an expression e and a
target value δ, samples values for some subexpressions of e,
and computes what target value δ′ for the remaining subex-
pression e′ would allow e to produce δ. We say that the com-
putation regresses to e′. The choice of which subexpressions
are sampled and which are regressed to is sometimes random-
ized.

Due to the restrictions on the language, we only need to
handle some of the kinds of expression. Emissions do not
need to be handled because delaying subexpressions may not
produce emissions. Flip expressions also do not need to be
handled because they produce a Boolean, not a floating point
number, and similarly lambda expressions produce functions,
not floating points. For delay expressions, meanwhile, the
density is 0, because s cannot possibly lead to s′, which has
the same timestamp as s.

Constants, variables, and now expressions are not continu-
ously distributed, and we require that delay times be contin-
uously distributed at the time of evaluation. Therefore such
expressions cannot appear at the top level of a delaying subex-
pression. However, they may appear as subexpressions of a
delaying subexpression, as long as they are combined with

1948

other subexpressions in a way that allows the whole delay-
ing subexpression to be continuously distributed. If, in the
process of regression, we encountered a constant, variable, or
now expression, we know that the randomization over which
subexpressions to regress to has led to this non-continuously
distributed one. If this happens, we give up and try again. In
some other randomization, the constant, variable or now ex-
pression will be sampled rather than regressed to, and we will
be able to succeed.

The base case of the regression process is a continuous
probabilistic choice q(e). For such a choice, note that

p(s � s′) = p(q(e) resolves to δ′)
=

∑
v p(e resolves to v)(q(v)(δ′))

We can estimate the density by sampling a resolution for e.
If it results in a nested delay, we can immediately return an
estimate of 0, because s cannot lead to s′. If it results in a
value v, we compute q(v)(δ′). We can do this because q is a
probabilistic primitive for which we can calculate densities.

Conditionals can be handled easily. To compute the density
that if e1 then e2 else e3 produces δ, we first sample e1.
If the result is T, we return the density that e2 produces δ,
otherwise we return the density that e3 produces δ.

Now consider binary operators. Let e be e1 ⊕ e2.

p(s � s′) = p(e1 ⊕ e2 resolves to δ′)

=
∑

v1
p(e1 resolves to v1)

p(e2 resolves to θ(v1, δ
′))

where θ(v1, δ
′) is the value such that v1 ⊕ θ(v1, δ

′) =
δ′. (We assume that binary arithmetic operators are in-
vertible.) We can estimate the density by sampling a res-
olution e1 of v1, and then recursively computing the den-
sity that e2 resolves to θ(v1, δ

′). Now, this works fine
for an expression such as 1.0 + uniform(2.0), but it
does not for uniform(2.0) + 1.0, because after we
have sampled uniform(2.0), we will regress to 1.0,
which is not continuously distributed, and give up. So
we randomly choose which operand to sample, and of
which to compute the density. For an expression such as
uniform(2.0) + exp(1.0), we succeed either way.
On the other hand, an expression such as 2.0 + 1.0 is im-
possible, because it is not continuously distributed.

To handle pairs and component extraction, the regression
algorithm is given an additional argument, which is a tar-
get. The target is either �, which means that we require the
entire result of the expression, or a sequence of lefts and
rights. For example the target left.right means that
we need the right component of the left component of the
value produced by the expression. When we want to compute
p(left e produces δ) with target τ , we recursively compute
p(e produces δ) with target left.τ .

For pairs, note that if a program is well-typed, the value
of a delaying subexpression must always be a floating point
number, so if such a subexpression involves a pair expres-
sion, we must only need the value of the target. This is not to
say that the other component does not need to be evaluated.
If the other component involves a nested delay, it will delay
the whole pair. Therefore we proceed as follows: We sample
the other component to see if it produces a nested delay. If

it does, s cannot lead to s′, so our estimate for the density is
0. Otherwise, we compute the density that the needed com-
ponent produces δ′.

For first expressions, we note that

p(first [e1, e2] resolves to δ′) =
p(e1 resolves to δ′)+
p(e1 results in a nested delay)p(e2 resolves to δ′)

We therefore recursively compute the density that e1 pro-
duces δ′. We also sample e1 to see if it results in a nested
delay, and if it does we add the density that e2 produces δ′.

Unfortunately, we run into trouble with some function ap-
plications. Our basic strategy for function applications is
to sample the function and the actual argument, and then
compute the density that the body, with the formal argument
bound to the actual argument, resolves to δ′. This works fine
in many cases, but not when the body of the function involves
no continuous probabilistic choices. An example of an ex-
pression that causes problems is

(lambda x . if x > 3.0 then x else 2 * x)
(uniform(5.0))

Our algorithm is therefore incomplete. It works for a large
and very useful class of programs, including all the exam-
ples of Section 3. We could have placed a restriction on the
language to rule out function applications in delaying subex-
pressions. However, we think that would have been too dra-
conian, ruling out some genuinely useful models on which
our algorithm works fine.

We now argue that if the particles at time ti−1 are con-
sistent with the emissions at time ti, with positive probability
our algorithm produces a sample with positive weight, as long
as the model is one for which our density computation works.
Let π be a path beginning with a particle at ti−1 that produces
the emissions. Let t be the time point at the beginning of the
temporal transition that terminated at ti. Consider the delay-
ing subexpression at t that resolved to ti − t. We can reorder
the resolution of delaying subexpressions such that this delay
was the last to be resolved. Let s = (e, t) be the state before
this subexpression is resolved. There is an interval around all
the continuous probabilistic choices in π before s is reached,
such that if a sampler takes all the same discrete choices, and
all the continuous choices in these intervals, and resolves de-
laying subexpressions in the same order, it will reach a state
s′ = (e, t′), where t′ is in an interval around t, and the den-
sity that e will resolve to ti − t′ is positive. Since we random-
ize the order in which delaying subexpressions are resolved,
the sampler makes all these choices with positive probabil-
ity. Since the density is positive, with positive probability all
samples taken during the course of the regression will turn out
the way they need to for the density estimate to be positive,
so the importance weight will be positive.

5.3 Implementation

We have implemented our algorithm and tested it on a variety
of examples, including some for which we can determine the
correct probabilities analytically, to demonstrate its correct-

1949

ness. For example, given the model

let f(b) =
delay uniform (if b then 2.0 else 3.0);
emit ‘‘foo’’;
delay uniform 1.0;
emit dist [0.8 : b, 0.2 : !b];
delay exp 1.0;
b
in f(flip 0.4)

and the evidence [1.0 : “foo”, 1.5 : T], the system generates
10, 000 particles in 2.5 seconds on a 2GHz single-core Win-
dows machine. It predicts that the probability the output will
be T is 0.8053; the correct probability is 0.8. We have also
run it on the music example of Section 3. With 4 voices and
20 notes per voice, the system filters the observations using
100 particles in 34 seconds.

6 Discussion

We have presented a powerful, expressive language for repre-
senting probabilistic processes in continuous time. We have
presented a semantics for the language, and an inference al-
gorithm that works for a large and useful class of models.

A natural question to ask, however, is whether this lan-
guage is needed at all. After all, probabilistic programming
languages can define models over arbitrary data structures.
Perhaps we could write a program in IBAL or Church that
would define a probability distribution over trajectories and
emission sequences, which would consist of values of vari-
ables and timestamps. We could then run the general-purpose
inference algorithm of those languages on our program.

While such an approach might be possible some time in the
future, there are several reasons why it is a good idea to de-
velop a special-purpose continuous time language. One basic
reason is that temporal models are so important that they de-
serve a language of their own. It would be much more cum-
bersome to develop them in a more general language from
scratch. Ideally, one might hope to write a library in the more
general language that would make developing temporal mod-
els straightforward, but that has not been done yet. In fact,
CTPPL may serve as a guideline for designing such a library.

Another reason to develop a special-purpose temporal lan-
guage is that time is special. The task of continually monitor-
ing the state of a process in an online manner is different from
that of reasoning about an entire model, therefore it requires
different algorithms. In particular, we use particle filtering
whereas Church uses MCMC.

A third, fundamental, reason is that IBAL and Church do
not allow continuous variables, and it is non-trivial to extend
them to do so. Note that CTPPL does not solve the prob-
lem of continuous variables in a general way. Floating point
valued emissions are not allowed. The only place in which
CTPPL fully handles continuous variables is in the time ele-
ment. CTPPL is able to do this because of the special struc-
ture of time. Time always moves linearly forward, and delays
are always positive. Our algorithm relies crucially on this
structure. Nevertheless, we believe our regression algorithm
to contain the seeds that will allow a language like Church to

fully incorporate continuous variables. Thus, even though it
develops a special-purpose language, the ideas in this paper
may be useful in general.

Acknowledgements

We wish to thank Christian Shelton for fruitful discussions.
Many thanks also to the anonymous reviewers for their use-
ful suggestions. This work was supported by DARPA under
the CALO program, through a subcontract from SRI Interna-
tional.

References

[Cemgil and Kappen, 2003] A. T. Cemgil and B. Kappen.
Monte Carlo method for tempo tracking and rhythm
quantization. Journal of Artificial Intelligence Research,
18:45–81, 2003.

[de Salvo Braz et al., 2008] R. de Salvo Braz, N. Arora,
E. Sudderth, and S. Russell. Open-universe state estima-
tion with D-BLOG. Poster presented at NIPS 2008 work-
shop on probabilistic programming, 2008.

[Fan and Shelton, 2008] Y. Fan and C. R. Shelton. Sampling
for approximate inference in continuous time bayesian net-
works. In International Symposium on Artificial Intelli-
gence and Mathematics, 2008.

[Goodman et al., 2008] N. D. Goodman, V. K. Mansinghka,
D. Roy, K. Bonawitz, and J. B. Tenenbaum. Church: A
language for generative models. In Uncertainty in Artifi-
cial Intelligence, 2008.

[Gopalratnam et al., 2005] K. Gopalratnam, H. Kautz, and
D. S. Weld. Extending continuous time Bayesian net-
works. In National Conference on Artificial Intelligence
(AAAI), 2005.

[Milch, 2006] B. Milch. Probabilistic Models with Unknown
Objects. PhD thesis, Computer Science Division, Univer-
sity of California, Berkeley, 2006.

[Ng et al., 2005] B. Ng, A. Pfeffer, and R. Dearden. Contin-
uous time particle filtering. In International Joint Confer-
ence on Artificial Intelligence, 2005.

[Nodelman et al., 2005] U. Nodelman, C. R. Shelton, and
D. Koller. Expectation maximization and complex dura-
tion distributions for continuous time Bayesian networks.
In Uncertainty in Artificial Intelligence, 2005.

[Nodelman, 2007] U. Nodelman. Continuous Time Bayesian
Networks. PhD thesis, Stanford University, 2007.

[Pfeffer, 2005] A. Pfeffer. Functional specification of proba-
bilistic process models. In National Conference on Artifi-
cial Intelligence (AAAI), 2005.

[Pfeffer, 2007] A. Pfeffer. The design and implementation of
IBAL: A general-purpose probabilistic language. In Sta-
tistical Relational Learning. MIT Press, 2007.

1950

